DCS GUIDE
F-86F SABRE (SERIES 35)
By Chuck
TABLE OF CONTENT

• PART 1 – CONTROLS SETUP
• PART 2 – COCKPIT & GAUGES
• PART 3 – START-UP PROCEDURE
• PART 4 – TAKEOFF
• PART 5 – LANDING
• PART 6 – ENGINE MANAGEMENT
• PART 7 – AIRCRAFT LIMITATIONS
• PART 8 – AIRCRAFT OPERATION
• PART 9 – HOW TO BE COMBAT READY
• PART 10 – SKINS
• PART 11 – AN/ARC-27 UHF RADIO TUTORIAL
• PART 12 – AN/ARN-6 RADIO NAVIGATION
• PART 13 – AN/APX-6 TRANSPONDER (IFF RADAR)
• PART 14 – TACTICS AGAINST THE MIG-15BIS
• PART 15 – OTHER SOURCES
PART 1 – CONTROLS SETUP

These controls should be mapped to your joystick and are essential. Names on left column are what you should look for in the “Action” column of the controls setup menu in DCS. Description of action is on the right column.

- **Microphone Button**
 - Allows you to use radio menu while flying
- **Flaps Down**
 - Deploys your flaps
- **Flaps Up**
 - Retracts your flaps
- **Gun Fire**
 - Fires your .50 guns
- **Weapon Release**
 - Fires rockets or drops ordnance (bomb/tank)
- **Landing Gear Up/Down**
 - Raises or deploys your landing gear
- **Airbrake On**
 - Deploys your airbrake
- **Airbrake Off**
 - Retracts your airbrake
- **A-4 Sight Electrical Caging Button (On Throttle)**
 - Electrically cages A-4 gunsight
- **A-4 Sight Manual Ranging Control (Throttle Twist Grip) CCW/Increase**
 - Increases gunsight radar range
- **A-4 Sight Manual Ranging Control (Throttle Twist Grip) CW/Decrease**
 - Decreases gunsight radar range
- **Nosewheel Steering Button**
 - Controls your nosewheel steering
- **Trim Down/Up/Left/Right (4 Buttons)**
 - Trims aircraft in each direction
- **Zoom In Slow**
 - Allows you to zoom in
- **Zoom Out Slow**
 - Allows you to zoom out
ASSIGNING PROPER AXIS IS IMPORTANT. HERE ARE A COUPLE OF TIPS.

TO ASSIGN AXIS, CLICK ON AXIS ASSIGN. YOU CAN ALSO SELECT “AXIS COMMANDS” IN THE UPPER SCROLLING MENU.

TO MODIFY CURVES AND SENSITIVITIES OF AXES, CLICK ON THE AXIS YOU WANT TO MODIFY AND THEN CLICK AXIS TUNE.
PART 1 – CONTROLS SETUP

BIND THE FOLLOWING AXES:

- PITCH (DEADZONE AT 5, SATURATION X AT 100, SATURATION Y AT 100, CURVATURE AT 20)
- ROLL (DEADZONE AT 5, SATURATION X AT 100, SATURATION Y AT 100, CURVATURE AT 20)
- RUDDER (DEADZONE AT 0, SATURATION X AT 100, SATURATION Y AT 100, CURVATURE AT 0)
- THROTTLE – CONTROLS ENGINE RPM
- WHEEL BRAKE LEFT
- WHEEL BRAKE RIGHT

WHEN SETTING WHEEL BRAKE AXIS, THEY ARE NOT SET TO “INVERT” BY DEFAULT.

YOU NEED TO CLICK ON INVERT IN THE AXIS TUNE MENU FOR EACH WHEEL BRAKE.
AN/ARC-27 UHF RADIO
SEE PART 11 FOR TUTORIAL

AN/APX-6 IFF TRANSPONDER IDENTIFICATION RADAR
SEE PART 13 FOR TUTORIAL
NOTE: NOT YET IMPLEMENTED
AN/ARN-6 RADIO COMPASS
CONTROL PANEL
SEE TUTORIAL FOR RADIO
NAVIGATION IN PART 12
TACHOMETER (%RPM)

Exhaust Temperature Gauge (°C x 100)

Fuel Gauge (x 100 LBS)

Fuel Flowmeter (x 1000 PPM)

Vertical Velocity Indicator (X1000 ft/min)

Cabin Pressure Altimeter

Attitude Indicator

Labs – See Part 9

Dive & Roll Indicator
FUEL TANK JETTISON SELECTOR

ALL TANKS OFF = SAFETY (TANKS WILL NOT DROP)
OUTDB ON & JETT = JETTISON OUTBOARD TANKS
INBD ON & JETT = JETTISON INBOARD TANKS
OTHER POSITIONS ARE SELF-EXPLANATORY

VERY IMPORTANT: THIS SWITCH MUST BE USED TO CHOOSE WHERE THE FUEL PUMPS WILL TAKE THE FUEL FROM. IF YOU LEAVE IT TO “ALL TANKS OFF” YOUR FUEL PUMPS WILL USE YOUR INTERNAL TANKS RATHER THAN YOUR EXTERNAL ONES. AND TRUST ME, YOU WILL NEED THAT EXTERNAL FUEL.

JETTISON FUEL TANKS

(PRESS THIS TO JETTISON FUEL TANKS ONCE THE TANK(S) YOU WANT TO DROP HAVE BEEN SELECTED)
OXYGEN FLOW INDICATOR

OXYGEN FLOW VALVE SWITCH
OPEN = ON/FWD
CLOSED = OFF/AFT
GUN MODE SELECTOR

FLAPS
AFT = RETRACTED
MIDDLE = NEUTRAL
FWD = UP

SPEED BRAKE EMERGENCY LEVER

RUDDER TRIM SWITCH

LATERAL ALTERNATE TRIM SWITCH

LONGITUDINAL ALTERNATE TRIM SWITCH

FLIGHT CONTROL SWITCH

WINDSHIELD ANTI-ICE OVERHEAT

FLOOR EQUIPMENT AIR TEMPERATURE PRESSURE
Radar Range Sweep Setter

Radar Target Indicator Light

Bombing Altimeter

Target Range (FT) (Radar Detected)

Missile Launch Mode:
- LH & RH = 1 Missile (Left First)
- RH = 1 Missile (Right First)
- Salvo = Both Missiles

Light On When A/C Exceeds G Limits for Missile Launch

Missile Lock Volume

Launch/Jettison Missile Safely

Various Warning Lights

Mechanical Sight Cage/Uncage Switch
- Left = Caged (Locked)
- Right = Uncaged (Unlocked)
- Uncaged = Ready to Fire!
INDICATED AIRSPEED LIMIT (KTS)
(RED INDEX, DO NOT USE AS REFERENCE)

TRUE AIRSPEED LIMIT (KTS) – DO NOT EXCEED
(RED NEEDLE IS WHAT YOU USE AS REFERENCE)

THE ALTIMETER WOULD BE READ AS FOLLOWS:
LONG THIN NEEDLE: @ 2 = 20000 ft
SHORT THICK NEEDLE @ 1 = 1000 ft
LONG THICK NEEDLE @ approx 1 = 100 ft

TOTAL ALTITUDE = 20000 + 1000 + 100 ft
= 21100 ft

QFE ALTIMETER SETTING (mm Hg)

TRUE AIRSPEED (KTS)

MAXIMUM GEAR/FLAP EXTENSION AIRSPEED
(YELLOW INDEX)

ALTITUDE (x 100 ft)

ALTITUDE (x 1000 ft)

ALTITUDE (x 10000 ft)
INBOARD FUEL TANK 120 GAL

OUTBOARD FUEL TANK 200 GAL
1. Battery
2. External AC Power Receptacle*
3. Nose Gear Emergency Lowering System Accumulator
4. Flight Control Normal Hydraulic System Accumulator
5. Fuel Filter Deicing System Alcohol Tank
6. External DC Power Receptacles
7. Aft Fuselage Fuel Tank Filler
8. Flight Control Alternate Hydraulic System Fluid Level Indicator Access Door
9. Left Wing Fuel Tank Filler
10. Left Drop Tank Filler
11. Oxygen Filler Valve
12. Forward Fuselage Fuel Tank Upper Cell Filler (Filled first to utilize full tank capacity)
13. Utility Hydraulic System Reservoir
14. Right Wing Fuel Tank Filler
15. Right Drop Tank Filler
16. Engine Oil Tank
17. Forward Fuselage Fuel Tank Lower Cell
18. Flight Control Alternate Hydraulic System Accumulator (Accumulators*)
19. Flight Control Normal Hydraulic System Fluid Level Indicator Access Door
PART 3 – START-UP

exteriro inspection

Check surfaces for cracks, distortions, loose rivets, and indications of damage; check for signs of hydraulic fluid, fuel, and oil leaks; check tires for general condition, and proper inflation; check all doors and panels secured; check position of gear doors, gear strut extensions, and condition of wheels.

NOTE: THERE ARE NO SLATS ON THE F-86F-35

1 NOSE
- Nose gear safety lock—Removed.
- Trim tab safety cap—Tight.
- Brake hose—Clear.
- Load limiters—As required.
- Landing and taxi lights—Retracted.
- Nose gear accumulator (at nose wheel well) pressure—1000–1250 psi.
- Emergency nose gear extension control valve—Reset (pulled full back).

2 FORWARD FUSELAGE AND RIGHT WING LEADING EDGE
- Flaps—Check.
- External stores—Check installation.
- Pilot head—Uncovered, static ports clean.
- Position light and wing tip—Check.

3 RIGHT WING TRAILING EDGE AND ATT FUSELAGE
- Altimeter and flap—Check.
- Drop tanks—Check fuel and caps secure.
- Main gear—Check.
- Right trailing gear wheel well—Check.
- Speed brake—Check.
- Flight control alternate accumulator or accumulators—Check (at speed brake wheel well pressure—600–800 psi).
- Flight control normal compensator valve—Check 1/4 to 1-1/4 inch extension.

4 EMPENNAGE
- Tail pipe cover—Removed.
- Tail cone and position lights—Check.

5 ATT FUSELAGE AND LEFT WING TRAILING EDGE
- Flight control alternate compensator valve—Check 1/4 to 1-1/4 inch extension.
- Speed brake—Check.
- Flight control alternate pump circuit breaker (within access door just forward of speed brake)—IN.
- Left trailing gear wheel well—Check.
- Flight control normal accumulator (at left wheel well) pressure—800–1000 psi.
- Landing gear door switch—CLOSED.
- Drop tank—Check fuel and caps secure.
- Flap and slat—Check.

6 LEFT WING LEADING EDGE AND FORWARD FUSELAGE
- Position light and wing tip—Check.
- External stores—Check installation.
- Slats—Check.
PART 3 – START-UP

1. SELECT YOUR GROUND CREW BY PRESSING “\" AND F8.
2. SELECT “GROUND ELECTRIC POWER” BY PRESSING F2
3. SELECT “ON” BY PRESSING F1 TO TURN ON GROUND POWER
4. ENSURE FLIGHT CONTROL SWITCH IS SET TO “ALTERNATE ON”
5. Ensure throttle is set to “off” by pressing “end” key (by default)
6. Set engine master switch to “on”
7. Set battery switch to “starter” (left click) for 2-3 seconds and then to “battery” (right click).
8. Wait for engine rpm to reach 3 %.
9. If engine does not reach 3 % within 1 minute, press stop-starter switch, set engine master switch to off and battery switch to off and repeat steps 5 to 8.
10. Once engine reaches 3 % rpm, set throttle to outboard by pressing “home” key (by default)
11. Once engine reaches 6 % rpm, set throttle to “idle” by pressing the “home” key (by default) a second time.
PART 3 – START-UP

12. HYDRAULICS WILL NOT BE WORKING UNTIL YOU REACH 25 % RPM. ONCE YOU HAVE THAT, RETRACT AIRBRAKES.

13. SET YOUR FLAPS FULLY DOWN AND THEN IN THE NEUTRAL POSITION

14. ONCE YOU HAVE SUFFICIENT ENGINE RPM (50+ %), SET THE FLIGHT CONTROL SWITCH TO “NORMAL. YOU SHOULD SEE THE “ALTERNATE ON” WARNING LIGHT SHUT DOWN AS SHOWN IN PICTURE ON THE RIGHT.

15. YOU CAN SET YOUR TAKEOFF TRIM BY SETTING YOUR TRIM MANUALLY UNTIL YOU SEE THE “TAKE-OFF POS.IND. LATERAL–DIRECT LONGIT.” LIGHT BLINK. THIS LIGHT MEANS THAT YOU ARE TRIMMED FOR TAKEOFF.

16. TURN YOUR OXYGEN ON.

17. YOU CAN TAXI AND TURN USING YOUR NOSEWHEEL STEERING KEY (“S” BY DEFAULT) AND YOUR RUDDER PEDALS (TOE BRAKES WORK TOO)

18. TURN THE GROUND POWER OFF LIKE IN STEPS 1 TO 3.

19. CLOSE YOUR CANOPY
PART 4 – TAKEOFF

MANY PEOPLE HAVE THEIR OWN WAY OF TAKING OFF, HERE IS MINE.

1. LINE UP ON THE RUNWAY USING YOUR NOSEWHEEL STEERING DURING TURNS (BY HOLDING “S” BY DEFAULT) AND YOUR RUDDER PEDALS (TOE BRAKES WORK TOO).

2. CHECK FOR YOUR FLAPS (DOWN/DEPLOYED) AND YOUR AIRBRAKES (RETRACTED). ASK YOUR WINGMEN IF YOU HAVE BAD VISIBILITY.

3. BRAKES ON

4. SLOWLY INCREASE THROTTLE TO MAX POWER. KEEP IN MIND THAT THROTTLE IS SLOW TO RESPOND TO INPUT

5. RELEASE BRAKES AT FULL POWER

6. USE RUDDER TO MAKE SMALL ADJUSTMENTS, BUT DO NOT USE THE NOSEWHEEL STEERING.

7. AT 120 KTS, ROTATE AND RETRACT YOUR FLAPS AND LANDING GEAR.

8. ONCE AIRBORNE, MAKE SURE YOUR FLAPS ARE SET TO “NEUTRAL”.

25
minimum-run take-off... AIRPLANES WITH SLATS*

WING FLAPS FULL DOWN
TRIM—NORMAL TAKE-OFF
HOLD BRAKES
FULL THROTTLE
RELEASE BRAKES

STICK FULL AFT
NOSE WHEEL LIFT-OFF
95 TO 100 KNOTS IAS

AIRPLANE LIFT-OFF
100 TO 105 (110 TO 115)
KNOTS IAS

GROUND RUN DISTANCE...100 FT

*Speeds and distances in parentheses are for airplanes without slats.

Figure 2-5

2-14

WING FLAPS UP AT 155 KNOTS IAS: ACCELERATE TO BEST CLimb SPEED

NORMAL CLimb OUT

HOLD AIRSPEED BELOW 120 TO 155 KNOTS IAS.

OVER 50 FT OBSTACLE

WITH 120 GAL DROP TANKS
NOSE WHEEL LIFT-OFF
100-105 KNOTS IAS
AIRPLANE LIFT-OFF
105-110 (115-120) KNOTS IAS
GROUND RUN
OVER 50 FT OBSTACLE

2770 (3800) FT

2-15
PART 5 – LANDING

MANY PEOPLE HAVE THEIR OWN WAY OF LANDING, HERE IS MINE.

1. DEPLOY AIRBRAKES AND LINE UP ON THE RUNWAY
2. DEPLOY FLAPS AND LANDING GEAR (CHECK FOR YELLOW SPEED LIMIT ON AIRSPEED INDICATOR)
3. FINAL APPROACH AT 135 KTS
4. TOUCHDOWN AT 110 KTS (THROTTLE AT IDLE)
5. GENTLY TAP YOUR BRAKES TO SLOW DOWN
6. ONCE RUNWAY IS CLEARED, RETRACT FLAPS AND AIRBRAKES.
7. SHUTDOWN AIRCRAFT (SET THROTTLE TO “OFF” BY PRESSING 2X “END” KEY, ENGINE MASTER SWITCH “OFF”, BATTERY SWITCH “OFF” AND EMERGENCY IGNITION “OFF”).
PART 6 – ENGINE MANAGEMENT
PART 6 – ENGINE MANAGEMENT

• THE GENERAL ELECTRIC J47 ENGINE HAD A 12-STAGE AXIAL COMPRESSOR AND A SINGLE-STAGE AXIAL TURBINE.

• THE ONLY TEMPERATURE YOU NEED TO KEEP AN EYE ON IS THE EXHAUST TEMPERATURE. MAKE SURE THE TEMPERATURE IS WITHIN SERVICEABILITY & SAFETY LIMITS (GREEN). ENGINE TEMPERATURE CAN ONLY BE CONTROLLED BY REDUCING OR AUGMENTING ENGINE RPM WITH THE THROTTLE.

• MAX ENGINE EXHAUST TEMPERATURE SHOULD BE 685 DEG C AT ALL TIMES.

• RECOMMENDED ENGINE RPM SETTING DURING NORMAL FLYING IS BETWEEN 85 % AND 95 % RPM.

• KEEP AN EYE FOR EXHAUST TEMPERATURE DURING COMBAT, ESPECIALLY IF YOU GO FULL THROTTLE (100 % RPM) FOR AN EXTENDED PERIOD OF TIME. PROLONGED OVERHEATING OF THE ENGINE WILL RESULT IN CATASTROPHIC ENGINE FAILURE.

• COMPRESSOR STALL MAY OCCUR WHEN YOU MOVE THE THROTTLE TOO QUICKLY. YOU WILL NOTICE A SUDDEN LOSS IN ENGINE RPM. THE J47 ENGINE IS SLOW TO RESPOND TO THROTTLE INPUT, SO IT SHOULD BE TREATED GENTLY. IN CASE OF COMPRESSOR STALL, PULL THROTTLE TO IDLE AND SLOWLY THROTTLE UP. MAJOR COMPRESSOR FAILURE MAY RESULT IN AN ENGINE FLAME-OUT.
PART 6 – ENGINE MANAGEMENT

IN CASE OF ENGINE FLAME-OUT

1. DO NOT PANIC
2. CUT THROTTLE AND SET IT TO “OFF” (PRESS “END” KEY 2 TIMES)
3. PUT THE F-86’S NOSE DOWN AND INCREASE SPEED BETWEEN 185 AND 225 KTS.
4. MAKE SURE MASTER SWITCH AND BATTERY SWITCHES ARE ON
5. SWITCH ON EMERGENCY IGNITION (LIFT RED COVER)
6. SWITCH ON EMERGENCY FUEL
7. SET THROTTLE TO IDLE POSITION (PRESS “HOME” KEY 2 TIMES)
8. ONCE ENGINE IS SPOOLING UP (90+ %), SWITCH OFF EMERGENCY IGNITION.
9. ONCE SMOOTH ENGINE OPERATION IS ESTABLISHED, SWITCH OFF EMERGENCY FUEL.
PART 7 – AIRCRAFT LIMITATIONS
PART 7 – AIRCRAFT LIMITATIONS

operating flight limits – airplanes without slats*
(no external load)

1. Select your indicated airspeed.
2. Trace vertically to your flight altitude.
3. Move horizontally to the left and find the maximum G you can pull at that airspeed and altitude before stalling.

WARNING
NEVER EXCEED MAX ALLOWABLE.

7 G

NOTE: Accelerated stall speeds increase accordingly as airplane gross weight increases; for airspeed and acceleration limitations in the various configurations, refer to “Airspeed Limitations” and “Acceleration Limitations,” this section.

*Stall speeds are slightly lower for airplanes with slats. Refer to “Stall Speeds,” Section VI.

Maximum allowable is 5 G for airplanes not changed by T.O. 1F-66-513.
PART 7 – AIRCRAFT LIMITATIONS

Airspeed and Acceleration Limitations

Only the configurations listed are approved for flight.

F-86F-25 and Later Airplanes

<table>
<thead>
<tr>
<th>Outboard Station</th>
<th>Inboard Station</th>
<th>Inboard Station</th>
<th>Outboard Station</th>
<th>Airspeed Limitations</th>
<th>G-Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Gal Drop Tank</td>
<td>B37K-1 Bomb Rack</td>
<td>B37K-1 Bomb Rack</td>
<td>120 Gal Drop Tank</td>
<td>IF BOTH TANKS ARE TYPE I OR III Below 25,000 feet: 450 knots IAS or Mach .80, whichever is lower. Above 25,000 feet: Maximum attainable except avoid buffet regions.</td>
<td>TANKS WITH FUEL +5.0 TANKS EMPTY -6.0*</td>
</tr>
<tr>
<td>120 Gal Drop Tank</td>
<td>MA-2A</td>
<td>MA-2A</td>
<td>MA-2A</td>
<td>IF EITHER TANK IS TYPE II OR IV 500 knots IAS or Mach .80, whichever is lower. No abrupt maneuvers, no continuous rolls, rate of roll limited to 90 degrees per second.</td>
<td>+4.0</td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries for different configurations.
PART 7 – AIRCRAFT LIMITATIONS

Airspeed and Acceleration Limitations

ONLY THE CONFIGURATIONS LISTED ARE APPROVED FOR FLIGHT.

F-86F-25 AND LATER AIRPLANES

<table>
<thead>
<tr>
<th>OUTBOARD STATION</th>
<th>INBOARD STATION</th>
<th>INBOARD STATION</th>
<th>OUTBOARD STATION</th>
<th>AIRSPEED LIMITATIONS</th>
<th>G-LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Gal Drop Tank</td>
<td>MA-3</td>
<td>MA-3</td>
<td>MA-3</td>
<td>120 Gal Drop Tank</td>
<td>IF BOTH TANKS ARE TYPE I OR III</td>
</tr>
<tr>
<td>Below 20,000 feet: Mach .80</td>
<td>TANKS WITH FUEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above 20,000 feet: Mach .90</td>
<td>+5.0 -2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF EITHER TANK IS TYPE II OR IV</td>
<td>TANKS EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 20,000 feet: Mach .80</td>
<td>+9.0* -2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above 20,000 feet: 500 knots IAS or Mach .90, whichever is lower. No abrupt maneuvers, no continuous rolls, rate of roll limited to 90 degrees per second.</td>
<td>+4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCKET STATION</td>
<td>B37K-1</td>
<td>Dumb Rack</td>
<td>MA-2A</td>
<td>MA-2A</td>
<td>MA-2A</td>
</tr>
<tr>
<td>Below 25,000 feet: 500 knots IAS or Mach .90, whichever is lower. Above 25,000 feet: Maximum attainable except avoid buffet regions.</td>
<td>TANKS WITH FUEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANKS EMPTY</td>
<td>+5.0 -2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF EITHER TANK IS TYPE II OR IV</td>
<td>+4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 knots IAS or Mach .90, whichever is lower. No abrupt maneuvers, no continuous rolls, rate of roll limited to 90 degrees per second.</td>
<td>-2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positive G-limits for airplanes not changed by T.O. 1F-86F-544 are 5.0 G for straight pull-outs and 3.3 G for rolling pull-outs.

34
AIRSPEED AND ACCELERATION LIMITATIONS

Only the configurations listed are approved for flight.

NOTE
- The missile rollerons must be pinned to prevent buffet.
- Positive G-limits for rolling pull-outs are two thirds of limits shown.
- Negative G-limit for rolling push-down is 1 G.

<table>
<thead>
<tr>
<th>OUTBOARD STATION</th>
<th>INBOARD STATION</th>
<th>MISSILE STATION</th>
<th>MISSILE STATION</th>
<th>INBOARD STATION</th>
<th>OUTBOARD STATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA 200 GAL DROP TANK</td>
<td>AIM-9B MISSILE</td>
<td>AIM-9B MISSILE</td>
<td>NAA 200 GAL DROP TANK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 knots IAS or where wing roll is excessive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid buffet regions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No continuous rolls.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAA 200 GAL DROP TANK</th>
<th>120 GAL DROP TANK</th>
<th>AIM-9B MISSILE</th>
<th>AIM-9B MISSILE</th>
<th>NAA 200 GAL DROP TANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF BOTH 120 GAL TANKS ARE TYPE I OR III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above 25,000 feet: Maximum attainable, except avoid buffet regions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 25,000 feet: 500 knots IAS or Mach .90 whichever is lower.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G-LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.0</td>
</tr>
<tr>
<td>-2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TANKS WITH FUEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.0</td>
</tr>
<tr>
<td>-2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TANKS EMPTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.0</td>
</tr>
<tr>
<td>-2.0</td>
</tr>
</tbody>
</table>

| IF EITHER 120 GAL TANK IS TYPE II OR IV |
| Above 25,000 feet: Mach .85 |
| Below 25,000 feet: Mach .82 |
| No abrupt maneuvers, no continuous rolls, rate of roll limited to 90 degrees per second. |

* or TDU-11/8 target rocket

Figure 5-3A
PART 8 – AIRCRAFT OPERATION

• YOUR AIRCRAFT CAN EASILY GO MORE THAN 400 KTS IN LEVEL FLIGHT, WHICH MEANS THAT YOU CAN VERY EASILY BLACK OUT IF YOU DO NOT PAY ATTENTION TO YOUR SPEED IN TURNING MANOEUVERS. BE GENTLE WITH YOUR AIRCRAFT.

• SPEED IS VERY IMPORTANT IN COMBAT, BUT ALSO DURING LANDING. PAY ATTENTION TO THE YELLOW INDEX ON THE AIRSPEED INDICATOR (SEE PAGE 18) TO KNOW WHEN YOU CAN SAFELY DEPLOY YOUR FLAPS AND LANDING GEAR. DEPLOYING THOSE AT HIGH SPEEDS WILL MAKE THEM JAM IN INCONVENIENT POSITIONS, AS SHOWN IN PICTURE ON THE RIGHT.

• DURING A NORMAL PATROL, YOU DO NOT NEED TO GO FULL THROTTLE ALL THE TIME. IT NEEDLESSLY WEARS THE ENGINE DOWN AND CAN CREATE PROBLEMS WITH FORMATION FLYING.

• AT HIGH MACH NUMBERS (BETWEEN MACH 0.95 AND 1) YOU CAN LOCK UP YOUR CONTROLS VERY EASILY (ESPECIALLY AILERONS). IF YOU WANT TO REMAIN IN FULL CONTROL OF YOUR PLANE AT ALL TIMES, IT IS BETTER TO FLY A LITTLE BIT SLOWER (MACH 0.7-0.8) BUT KEEP FULL AUTHORITY OVER YOUR CONTROLS. THIS CAN PREVENT UNFORTUNATE MID-AIR COLLISIONS WITH YOUR WINGMEN (TRUE STORY).
• Typically in World War II fighters, flaps were used to make tighter turns in combat. However, use of flaps during combat is strictly prohibited in the Sabre.

• Use of airbrakes can help you turn much tighter. They come in very handy in dive bombing manoeuvres and defensive manoeuvres, especially when you have a Mig-15 on your tail that you just can’t shake off.

• Use airbrakes only when you need to. Bleeding off too much speed in the Sabre can quickly become fatal. Please take note that:
 1. The Mig-15 outclimbs the F-86.
 2. The F-86 outdives the Mig-15
 3. The F-86 is generally slightly more manoeuvrable than the Mig-15
 4. The F-86 is very vulnerable at low speeds
PART 8 – AIRCRAFT OPERATION

- IN CASE OF LANDING GEAR FAILURE, HERE IS THE PROCEDURE FOR EMERGENCY LANDING GEAR LOWERING.

- PLEASE TAKE NOTE THAT THE EMERGENCY LANDING GEAR HANDLE IS CURRENTLY MODELLED BUT NOT FUNCTIONAL. IT IS A BUG AND BELSIMTEK HAS CONFIRMED THAT THEY ARE WORKING ON FIXING IT.
PART 9 – HOW TO BE COMBAT READY

BEFORE WE START, I NEED TO MAKE SOMETHING CLEAR:

• THE ELECTRICAL CAGING SWITCH AND THE MECHANICAL CAGING SWITCH ARE NOT THE SAME THING. THEY HAVE DIFFERENT FUNCTIONS.

• THE FOLLOWING TERMINOLOGY WILL BE USED:
 • “RELEASE ELECTRICAL CAGE SWITCH” (GUNSLIGHT WILL BE MOVING)
 • “HOLD ELECTRICAL CAGE SWITCH” (GUNSLIGHT WILL NOT BE MOVING)
 • “UNCAGE MECHANICAL SIGHT” (RIGHT POSITION = GUNSLIGHT WILL BE MOVING)
 • “CAGE MECHANICAL SIGHT” (LEFT POSITION = GUNSLIGHT WILL NOT MOVE)

WINGSPAN OF A MIG-15BIS
10 m = 32 ft (VALUE TO ENTER IN GUNSLIGHT WINGSPAN)
PART 9 – HOW TO BE COMBAT READY

FOR GUNS:

1) SET WEAPON SELECTOR TO “GUNS” (DO IT 10 MINUTES IN ADVANCE TO LET THE A-4 GUNSIGHT SYSTEM WARM UP)

2) UNCAGE MECHANICAL SIGHT BEFORE ENGAGING AIR TARGET

3) CURRENT MAX RADAR RANGE IS 1600 FT. RADAR LIGHT WILL BECOME RED ONCE A TARGET IS SPOTTED AND IT MIGHT SUFFER INTERFERENCE UNDER AN ALTITUDE OF 6000 FT BECAUSE OF GROUND CLUTTER. CONTINUOUS LIGHT MEANS CONTINUOUS RADAR TRACKING, WHILE FlickERING LIGHT MEANS THAT RADAR IS SPOTTING SOMETHING BUT NOT TRACKING IT.

4) HOLD ELECTRICAL CAGE SWITCH FOR A FEW SECONDS (GUNSIGHT WILL STOP MOVING) AND RELEASE IT (GUNSIGHT WILL BEGIN TRACKING). TARGET RANGE ON RANGE DIAL SHOULD STOP WOBBLING AND THE GUNSIGHT WILL START TRACKING THE TARGET’S RANGE.

5) FIRE ON TARGET (GUN FIRE BTN) WHEN PIPPER IS ON IT.
PART 9 – HOW TO BE COMBAT READY

FOR MISSILES:

1) SET WEAPON SELECTOR TO “MISSILE” (DO IT 10 MINUTES IN ADVANCE TO LET THE A-4 GUNSLIGHT SYSTEM WARM UP)

2) UNCAGE MECHANICAL SIGHT BEFORE ENGAGING AIR TARGET

3) SELECT MISSILE LAUNCH MODE (TYPICALLY I USE RH BUT IT IS REALLY UP TO YOUR PERSONAL PREFERENCE). YOU WILL START HEARING THE SEEKER MISSILE GROWL.

4) CURRENT MAX RADAR RANGE IS 1600 FT AND IT MIGHT SUFFER INTERFERENCE UNDER AN ALTITUDE OF 6000 FT BECAUSE OF GROUND CLUTTER. RADAR LIGHT WILL BECOME RED ONCE A TARGET IS SPOTTED. CONTINUOUS LIGHT MEANS CONTINUOUS RADAR TRACKING, WHILE FLICKERING LIGHT MEANS THAT RADAR IS SPOTTING SOMETHING BUT NOT TRACKING IT.

5) HOLD ELECTRICAL CAGE SWITCH FOR A FEW SECONDS (GUNSLIGHT WILL STOP MOVING) AND RELEASE IT (GUNSLIGHT WILL BEGIN TRACKING). TARGET RANGE ON RANGE DIAL SHOULD STOP WOBBLING AND THE GUNSLIGHT WILL START TRACKING THE TARGET’S RANGE.

6) FIRE ON TARGET (GUN FIRE BTN) WHEN YOU HAVE A SOLID LOCK (TYPICAL SCREECHING SOUND THAT MAKES YOUR EARS BLEED). MAKE SURE YOU ARE CLOSE ENOUGH (APPROX. 2000 FT).
PART 9 – HOW TO BE COMBAT READY

ROCKETS

1) SET WEAPON MODE TO “GUNS”
2) SET GUNSGEIGHT MODE TO “ROCKET”
3) FLIP ROCKET MODE COVER
4) CLICK SWITCH UNDER COVER (ON NEUTRAL BY DEFAULT)
 RIGHT CLICK = SINGLE ROCKET
 LEFT CLICK = AUTO ROCKET
 NOTE: FIRST ROCKET TO BE FIRED IS SET WITH
 THE ROCKET INTERVALOMETER ON THE LEFT PANEL
5) USE GUNSGEIGHT AND ELECTRICAL CAGING SWITCH TO AIM AS SHOWN IN “GUNS” SECTION.
6) FIRE YOUR ROCKETS BY PRESSING THE “WEAPON RELEASE” BUTTON
PART 9 – HOW TO BE COMBAT READY

DIVE BOMBING – MANUAL MODE

1) SET WEAPON MODE TO “SIGHT CAMERA & RADAR”

2) SET FUSE MODE TO “ARM NOSE & TAIL”

3) SET GUNSHOT MODE TO “BOMB”

4) SET RELEASE MODE TO “MANUAL”

5) SELECT BOMB LOADOUT TO DROP (ALL/LEFT/RIGHT)

6) DEPLOY AIRBRAKES AND DIVE FOR YOUR TARGET.

7) DROP YOUR ORDNANCE BY PRESSING THE “WEAPON RELEASE” BUTTON
PART 9 – HOW TO BE COMBAT READY

DIVE BOMBING – AUTOMATIC MODE

1) SET WEAPON MODE TO “SIGHT CAMERA & RADAR”

2) SET FUSE MODE TO “ARM NOSE & TAIL”

3) SET GUNSIGHT MODE TO “BOMB”

4) SET RELEASE MODE TO “AUTO”

5) SELECT BOMB LOADOUT TO DROP (ALL/LEFT/RIGHT)

6) UNCAGE MECHANICAL SIGHT (RETICLE WILL BE MOVING)
PART 9 – HOW TO BE COMBAT READY

DIVE BOMBING – AUTOMATIC MODE

7) DEPLOY AIRBRAKES.

8) ENTER A 45-DEG DIVE AND AIM YOUR PIPPER WHERE YOU WANT THE BOMB TO GO.

9) HOLD ELECTRICAL CAGING SWITCH FOR ABOUT 3 SECONDS.

10) WHILE HOLDING THE ELECTRICAL CAGING SWITCH, HOLD YOUR WEAPON RELEASE BUTTON. KEEP PIPPER ON TARGET.

11) RELEASE ELECTRICAL CAGING SWITCH, BUT KEEP HOLDING THE WEAPON RELEASE SWITCH. YOU SHOULD HEAR A “SHLONK” WHEN YOUR BOMBS ARE DROPPED AUTOMATICALLY.
PART 9 – HOW TO BE COMBAT READY

DIVE BOMBING – MANUAL PIP BOMBING MODE
1) SET WEAPON MODE TO “SIGHT CAMERA & RADAR”
2) SET FUSE MODE TO “ARM NOSE & TAIL”
3) SET GUN SIGHT MODE TO “GUN”
4) SET RELEASE MODE TO “MANUAL”
5) SELECT BOMB LOADOUT TO DROP (ALL/LEFT/RIGHT)
6) UN Cage MECHANICAL SIGHT (RETICLE WILL BE MOVING)
7) SET MANUAL PIP SWITCH CONTROL TO “BOMB”
8) DECIDE YOUR STARTING ALTITUDE AND SPEED. IN OUR CASE, WE WILL PICK 288 KTS ENTRY SPEED AT 15000 FT OVER TARGET, AS SUGGESTED BY THE MANUAL PIP CHART.
PART 9 – HOW TO BE COMBAT READY

DIVE BOMBING – MANUAL PIP BOMBING MODE

9) CLICK ON THE CENTER KNOB OF THE MANUAL PIP CONTROL AND SET THE DIVE ANGLE YOU INTEND TO TAKE. I USUALLY TAKE A DIVE ANGLE OF 50 DEG. CHECK THE ASSOCIATED NUMBER ON THE EXTERNAL CIRCLE, AND WE CAN DEDUCE THAT FOR A 50-DEGREE DIVE ANGLE, STARTING OUR DIVE FROM 15000 FT AT 288 KTS, OUR BOMB SHOULD BE RELEASED AT 4000 FT (RELEASE PARAMETER).

10) SINCE OUR EYES ARE GLUED ON THE PIPPER AND NOT ON THE ALTIMETER DURING THE DIVE, SOMEONE HAD THE BRILLIANT IDEA TO INCLUDE A BOMBING ALTIMETER. SET THE BOMBING ALTIMETER AS SHOWN IN THE PICTURE TITLED “CORRECT POSITION” AND TRACK THE ALTITUDE NEEDLE.

11) CUT THROTTLE, DEPLOY AIRBRAKES AND DIVE FOR YOUR TARGET AT A DIVE ANGLE OF 50 DEGREES. CHECK YOUR DIVE ANGLE INDICATOR FOR REFERENCE. AIM WITH THE PIPPER.

12) WHILE AIMING WITH THE PIPPER, WAIT FOR THE ALTIMETER NEEDLE TO MEET THE BOMB RELEASE NEEDLE AS SHOWN IN STEP 10. WHEN BOTH NEEDLES MEET, DROP YOUR ORDNANCE BY PRESSING THE “WEAPON RELEASE” BUTTON AND ENJOY THE FIREWORKS.
PART 9 – HOW TO BE COMBAT READY

DIVE BOMBING – MANUAL PIP BOMBING MODE

- BOTH NEEDLES ARE NOW ALIGNED...
- BOMBS AWAY!
- KEEPING AN EYE ON DIVE ANGLE
- AIMING WITH PIPPER
- ALL BECAUSE OF THIS!

48
PART 9 – HOW TO BE COMBAT READY

L.A.B.S.
PART 9 – HOW TO BE COMBAT READY

L.A.B.S.

LOW-ALTITUDE BOMBING SYSTEM

Toss bombing (sometimes known as loft bombing, and by the U.S. Air Force as the Low Altitude Bombing System, LABS) is a method of bombing where the attacking aircraft pulls upward when releasing its bomb load, giving the bomb additional time of flight by starting its ballistic path with an upward vector.

The purpose of toss bombing is to compensate for the gravity drop of the bomb in flight, and allow an aircraft to bomb a target without flying directly over it. This is in order to avoid overflying a heavily defended target, or in order to distance the attacking aircraft from the blast effects of a nuclear (or conventional) bomb.

However, the Sabre in DCS is not equipped with nuclear ordnance yet, so the use of the LABS system is rather impractical as the method is better suited for nuclear blasts than for precision bombing. Still, it’s a cool feature so I thought I would talk about it nonetheless.
PART 9 – HOW TO BE COMBAT READY

L.A.B.S. LOW-ALTITUDE BOMBING SYSTEM

1) SET WEAPON MODE TO “SIGHT CAMERA & RADAR”
2) SET FUSE MODE TO “ARM NOSE & TAIL”
3) SET GUNSHOT MODE TO “BOMB”
4) SET RELEASE MODE TO “MANUAL”
5) SELECT BOMB LOADOUT TO DROP (ALL/LEFT/RIGHT)
6) UNCAGE LABS GYRO
7) TURN ON LABS
8) SET LABS START SWITCH TO “LABS”
PART 9 – HOW TO BE COMBAT READY

L.A.B.S. LOW-ALTITUDE BOMBING SYSTEM

9) FLY LOW UNTIL YOU REACH THE TARGET.

10) HOLD “WEAPON RELEASE” AND START PULLING UP AT A STEADY +4G WHILE CHECKING THE ACCELEROMETER AND THE LABS GYRO TO AVOID LATERAL MOVEMENT AS MUCH AS YOU CAN.

11) YOUR BOMBS SHOULD BE RELEASED AUTOMATICALLY IF YOU KEEP HOLDING THE WEAPONS RELEASE SWITCH WHILE MAINTAINING +4G.

KEEP A STEADY +4G WHILE CLIMBING.

KEEP YOURSELF ALIGNED AND AVOID ROLLING MOVEMENT BY CHECKING THE LABS GYRO.

AIRFIELD IS OUR TARGET, LET’S START PULLING UP (4G)!

TARGET = KABOOM!
PART 10 – SKINS

• SKINS MUST BE INSTALLED IN THE DIRECTORY SHOWN IN THE PICTURE BELOW.
• SOMETIMES THE FOLDER IS NOT THERE. CREATE ONE MANUALLY CALLED “F-86F Sabre” TO BE ABLE TO STOCK THESE SWEET SKINS.
PART 11 – AN/ARC-27 UHF RADIO TUTORIAL

• THE AN/ARC-27 UHF RADIO OF THE SABRE HAS 19 PRESET CHANNELS GOING FROM 225 TO 400 MHz. EACH FREQUENCY IS MAPPED INDIVIDUALLY AND MANUALLY BY THE MISSION BUILDER. THE CHANNEL FREQUENCIES SHOULD BE AVAILABLE IN THE MISSION BRIEFING OR MISSION DESCRIPTION IF THE MISSION BUILDER WANTED TO MAKE YOUR LIFE EASIER.

• YOU CAN RECEIVE AND COMMUNICATE WITH A FREQUENCY BY SETTING YOUR RADIO TO “T/R” (TRANSMIT-RECEIVE) OR “T/R+G” (TRANSMIT-RECEIVE INCLUDING THE “G” FREQUENCY.).

• THE “G” CHANNEL IS AN EMERGENCY GUARD FREQUENCY (ALSO KNOWN AS CHANNEL 0).

• FOR INSTANCE, THIS PICTURES SHOWS THAT I CAN TRANSMIT AND RECEIVE INFORMATION FROM CHANNEL 10 AND RECEIVE INFORMATION FROM THE EMERGENCY GUARD FREQUENCY.

• YOU CAN CONTROL YOUR RADIO VOLUME IF IT IS TOO LOUD OR TOO LOW ROTATING THE “VOLUME” BUTTON.

• TO COMMUNICATE WITH OTHER AIRCRAFT, FLIGHTS OR CONTROL TOWERS, USE YOUR “MICROPHONE BUTTON” CONTROL MAPPED EARLIER.
PART 12 – AN/ARN-6 RADIO NAVIGATION

• WE WILL USE A “NDB” (NON-DIRECTIONAL BEACON) FOR RADIO COMPASS NAVIGATION. THESE NDBS ARE LOCATED AT VARIOUS AIRFIELDS AND CERTAIN PLACES. TAKE NOTE THAT THEY ARE HARDCODED IN THE MAP.

• NDBS TRANSMIT A MORSE CODE ON A SET FREQUENCY THAT CAN BE HEARD WITH THE AN/ARN-6 RADIO COMPASS. THE SOURCE OF THE SIGNAL CAN BE DETECTED WITH THE RADIO COMPASS ON THE MAIN INSTRUMENT PANEL (ITS ARROW WILL TELL YOU WHERE THE SIGNAL YOU ARE RECEIVING IS COMING FROM).

• THERE CAN BE MANY NDBS TRANSMITTING AT FREQUENCIES THAT ARE VERY CLOSE TO ONE ANOTHER, SO IT CAN BE EASY TO FOLLOW ANOTHER SIGNAL BY MISTAKE.

• RADIO TUNING IS VERY PRECISE AND SENSITIVE. THE ONLY RELIABLE WAY TO KNOW IF YOU ARE TRACKING THE GOOD SIGNAL IS TO LISTEN TO THE MORSE CODE SIGNAL EMITTED BY THE BEACON AND SEE IF IT MATCHES.

• ALL BEACONS AND THEIR RESPECTIVE MORSE CODES ARE LISTED IN LINO GERMANY’S BEACON MAP AVAILABLE HERE:

 DIRECT DOWNLOAD: https://dl.dropboxusercontent.com/u/20586543/Lino_Germany%C2%B4s_DCS_Beacon_Map_Version_1.31.zip
• IN THE FOLLOWING EXAMPLE, I WILL FLY FROM SUKHUMI AIRFIELD (WHICH ALREADY HAS 2 NDBS NEXT TO IT TRANSMITTING OTHER SIGNALS ON THEIR OWN FREQUENCIES)

• THE SIGNAL I WILL TRACK IS A NDB NEAR THE SMALL TOWN OF GALI. THE BEACON MAP TELLS ME THAT THE BEACON IS TRANSMITTING ON A FREQUENCY OF 525.00 MHz AND THE MORSE CODE IS — . . —

• I CAN ASSOCIATE THE MORSE CODE WITH ONE LONG BEEP, FOLLOWED BY TWO SHORT BEEPS, FOLLOWED BY A PAUSE, FOLLOWED BY A SHORT BEEP AND FOLLOWED BY A LONG BEEP.

• TAKE NOTE THAT IF YOU FLY UNDER 6000 FT THERE MIGHT BE INTERFERENCES FROM GROUND CLUTTER.
STEP 1
SET TO “COMP” (COMPASS)

STEP 2
SET FREQUENCY RANGE TO 410-850 (WE ARE LOOKING FOR 525 MHZ)

STEP 3
FINE TUNE FREQUENCIES BY USING THE MOUSE WHEEL. BE CAREFUL: IT IS VERY SENSITIVE.

STEP 4
FIND EMITTING FREQUENCIES BY CHECKING THE SIGNAL STRENGTH NEEDLE.

STEP 5
SIGNAL FOUND!

STEP 6
ADJUST VOLUME AND LISTEN TO THE MORSE CODE SIGNAL TO VERIFY THAT YOU ARE TRACKING THE RIGHT SIGNAL. KEEP TUNING IF THE SIGNAL IS WRONG.
STEP 7
FOLLOW THE NEEDLE OF THE RADIO COMPASS TO GET TO THE SOURCE OF THE SIGNAL.
USE COMMON SENSE TO SEE IF THE FREQUENCY YOU ARE RECEIVING IS POINTING IN THE RIGHT DIRECTION. IF THE SIGNAL IS POINTING NORTH WHILE THE BEACON SHOULD BE SOUTH, YOU ARE PROBABLY TRACKING ANOTHER BEACON THAT HAS A SIMILAR FREQUENCY AS THE ONE YOU ARE LOOKING FOR. THE TASK CAN BECOME A CHORE IF THERE ARE MANY BEACONS TRANSMITTING ON SIMILAR FREQUENCIES.
NOTE: DO NOT USE THE HEADING NUMBERS ON THE RADIO COMPASS: THEY ARE NOT NECESSARILY INDICATING CORRECT HEADINGS.

STEP 8
FOLLOWING MY COMPASS AND VERIFYING WITH MY MAP, THE BEACON SIGNAL I AM TRACKING APPEARS TO BE IN THIS AREA, WHICH MAKES SENSE SINCE I AM FLYING OVER SUKHUMI AT THIS TIME AND THE BEACON SHOULD BE AT MY SOUTH-EAST (APPROX A HEADING OF 110), WHICH IS PRETTY MUCH WHERE I AM GOING.
PART 13 – AN/APX-6 TRANSPONDER (IFF RADAR)

• THE IFF (IDENTIFY-FRIEND-OR-FOE) SYSTEM IS FAIRLY SIMPLE: IT DETECTS WITH RADAR WHETHER OR NOT A NEARBY AIRCRAFT IS FRIENDLY OR NOT. HERE IS HOW TO USE IT:

1. ROTATE MASTER SWITCH TO STDBY FOR 3 MINUTES (WARM-UP)

2. ROTATE MASTER SWITCH TO NORM AFTER WARM-UP.

NOTE: NEXT STEPS WILL COME WHEN PROPER IFF RADAR SYSTEM IS IMPLEMENTED FOR THE SABRE BY BELSIMTEK. SORRY. 😞
PART 14 – TACTICS AGAINST THE MIG-15BIS

YOU SHOULD CONSULT “NO GUTS, NO GLORY”, AN EXCELLENT TEXTBOOK WRITTEN BY USAF MAJOR GENERAL FREDERICK C. BLESSE (RET). IT HAS EXCELLENT INSIGHT ON HOW THE SABRE SHOULD BE FLOWN IN COMBAT SCENARIOS.

LINK: https://dl.dropboxusercontent.com/u/20586543/NO%20GUTS%20NO%20GLORY%20-%20A%20GUIDE%20TO%20SABRE%20COMBAT.pdf
PART 15 – OTHER RESOURCES

- BUNYAP Sims Youtube Channel
 - Main Channel: https://www.youtube.com/user/4023446/videos
 - Radio Comm Tutorial: https://www.youtube.com/watch?v=xa6TsnbG5pl
 - Manual Pip Bombing System: https://www.youtube.com/watch?v=tbDON_t_FZw

- XXJohnXX Youtube Channel
 - Main Channel: https://www.youtube.com/user/4023446/videos
 - Sabre Tutorials: https://www.youtube.com/playlist?list=PLs4yzB9MM2Sx_BSiYcQkTNTy4Ei2vtxUy
 - Labs Tutorial: https://www.youtube.com/watch?v=uXWOb_B5zpM

- 504Smudge Youtube Channel
 - https://www.youtube.com/user/504smudge/featured

- Labs Tutorial: “Nuclear War: "Delivery of Atomic Weapons by Light Carrier Aircraft" 1959 US Navy Training Film”
 - https://www.youtube.com/watch?v=3dlqfN_aPtY

- Lino_Germany Beacon Map